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The fact that information acquired before the onset of amnesia can be lost 
(retrograde amnesia) has fascinated psychologists, biologists, and clinicians 
for over 100 years. Studies of retrograde amnesia have led to the concept 
of memory consolidation, whereby medial temporal lobe structures direct 
the gradual establishment of memory representations in neocortex. Recent 
theoretical accounts have inspired a simple neural network model that 
produces behavior consistent with experimental data and makes these 
ideas about memory consolidation more concrete. Recent physiological 
and anatomical findings provide important information about how memory 

consolidation might actually occur. 
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Introduction 

Retrograde amnesia refers to loss of  memory for infor- 
mation acquired before the onset of amnesia. Retrograde 
memory loss almost always occurs in association with 
anterograde amnesia, which is characterized by an in- 
ability to learn new information. Depending on the 
locus and extent of  brain damage, retrograde amnesia 
can be equivalent across past time periods, or it can 
be temporally graded (i.e. memories acquired recently 
are more affected than memories acquired longer ago). 
Temporally-graded retrograde amnesia has been used to 
support the concept of memory consolidation, that is, 
the idea that memory is gradually 'fixed' as time passes 
after learning. This review focuses on the phenomenon 
of  retrograde amnesia, especially its temporally-graded 
form, and then explores current ideas about memory 
consolidation and recent neurobiological findings that 
suggest how memory consolidation might occur. 

Temporally-graded retrograde amnesia 

For more than 100 years, clinical reports of  human mem- 
ory impairment have emphasized that retrograde mem- 
ory loss is typically temporally graded [1,2]. Quantita- 
tive studies of  human retrograde amnesia first appeared 
in the 1970s. In their seminal study in 1971, Sanders 
and Warrington [3] reported that five amnesic patients 
(one with amnesia pursuant to right temporal lobec- 
tomy; three with diencephalic amnesia from alcoholic 

Korsakoff's syndrome; and one with amnesia from coal 
gas poisoning) had ungraded retrograde amnesia extend- 
ing nearly 40 years. This result was notable because it ap- 
peared to contradict a century of  clinical interpretation 
based on less rigorous methods. 
Several findings during the past two decades have clari- 
fied this matter considerably. First, the patient with the 
right temporal lobectomy (patient N.T.) had a 28-year 
history of frequent seizures [4,5]. Thus, N.T.'s exten- 
sive remote memory impairment might have reflected 
a failure of  new information storage (due to recurrent 
seizures) rather than retrograde amnesia itself. (Autopsy 
after the patient's death in 1986 revealed a sclerotic le- 
sion of the left hippocampal formation in addition to the 
right temporal lobectomy [5].) 
Second, it is widely recognized that patients with Kor- 
sakoff's syndrome are not an optimal group for studying 
retrograde amnesia, because their memory impairment 
typically has a progressive onset and it is difficult to 
date precisely the time when the amnesia began. In 
any case, in eight separate quantitative studies of re- 
mote memory impairment published since 1971, pa- 
tients with alcoholic Korsakoff's syndrome have consis- 
tently exhibited extensive temporally-graded retrograde 
amnesia covering a decade or more [6-13]. Thus, the 
vast majority of  patients with alcoholic Korsakoff's syn- 
drome have temporally-graded retrograde amnesia. A 
few non-Korsakoff patients with bilateral diencephalic 
damage or basal forebrain damage have also been studied 
[13,14,15°,16], but the results here are variable, perhaps 
because the neuroanatomy of  the amnesia is itself vari- 
able and often incompletely described. 

Abbreviation 
REM--rapid eye movement. 
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Finally, quantitative studies of  other patient groups have 
confirmed the finding that retrograde amnesia can be 
temporally graded. For example, on a test of former 
one-season television programs, designed to permit the 
equivalent sampling of  past time periods [17], psychi- 
atric patients prescribed bilateral electroconvulsive ther- 
apy (ECT) for depressive illness exhibited temporally- 
graded retrograde amnesia covering about three years 
[18]. In addition, patients with amnesia due to anoxia or 
ischemia, who developed their amnesia on a known date, 
exhibited temporally-graded retrograde amnesia cover- 
ing 10-20 years [13], and patients with transient global 
amnesia exhibited temporally-graded retrograde amnesia 
covering 20 years or more [19,20]. 

Retrograde amnesia is not always temporally 
graded 

Akhough temporally-graded retrograde amnesia is the 
typical finding in circumscribed human amnesia, it is 
important to note that some memory-impaired patients 
have extensive retrograde memory impairment with no 
evidence of  sparing in more remote time periods. The 
best known examples of  this condition are three patients 
who developed severe amnesia as a consequence of her- 
pes simplex encephalitis (patient S.S. [21], patient D.R.B. 
(Boswell) [22], and patient R.ER. [23]) and a fourth pa- 
tient K.C., who developed amnesia after a closed head 
injury [24] (for a more recent report of amnesia follow- 
ing an infarction, see [25]). Extensive remote memory 
impairment has also been described in patients after 
left temporal lobectomy [26], and in association with 
dementia from Alzheimer's disease, Huntington's disease, 
Parkinson's disease, or Pick's disease [27-30]. 

Finally, it should be noted that severe and sometimes 
extensive retrograde amnesia, in the absence of any an- 
terograde amnesia at all, is the hallmark of psychogenic 
(functional) amnesia [31-33]. 

The association between anterograde and 
retrograde amnesia 

In Russell and Nathan's [2] classic study of more than 
1000 patients with closed head injury, the duration of  
anterograde amnesia was strongly correlated with the 
extent of  retrograde amnesia. In addition, for chronic 
amnesic patients with temporally-graded retrograde am- 
nesia, a correlation can usually be detected between the 
severity of  anterograde impairment and the extent of  
the retrograde impairment: correlations ranged between 
0.31 and 0.69 based on five different remote memory 
tests [12]; see also [13]. Such correlations follow natu- 
rally from one major view about how the medial tem- 
poral lobe memory system and associated diencephalic 
structures contribute to normal memory functions [34]. 

Specifically, these structures are essential for establishing 
information within long-term memory, and they are 
also essential for a limited period of time after learn- 
ing [35-38]. 

Note, however, that this view provides no account for 
extensive, ungraded forms of  retrograde anmesia. In- 
deed, extensive ungraded retrograde amnesia appears to 
be a distinct entity. Thus, four recent reports describe 
not only extensive and apparently ungraded retrograde 
amnesia, but also retrograde amnesia that appeared dis- 
proportionately severe in comparison to anterograde am- 
nesia [26,39-41]. For additional cases and discussion, see 
reviews [15",42°]. 

The most likely possibility is that severe, ungraded retro- 
grade amnesia involves damage to structures in addition 
to (or other than) the medial temporal lobe and dien- 
cephahc structures associated with circumscribed am- 
nesia [43]. The cases cited above all involved damage 
to neocortex of  the anterior and lateral temporal lobe. 
Such damage would be expected to compromise mem- 
ory storage sites themselves, that is, knowledge systems 
[44-46], without altogether destroying the ability to es- 
tablish new representations. Damage to memory storage 
sites would produce a constant loss of memory across past 
time periods, that is, ungraded retrograde amnesia. New 
representations might still be established to the extent 
that they are based on different cues or different pro- 
cessing strategies than ones that depend on the damaged 
tissue, and such representations would therefore be stored 
at different sites in other knowledge systems. 

Temporally-graded retrograde amnesia in 
patients with damage limited to the 
hippocampal region 

It is reasonable to expect that some of  the most use- 
ful information about retrograde amnesia should come 
from patients for whom detailed neuropsychological and 
anatomical information is available. Four such patients 
(R.B., G.D., L.M., and W.H.) with bilateral damage to 
the hippocampal region (i.e. the hippocampus proper, 
dentate gyrus, and subiculum) have been studied. These 
four patients had circumscribed memory impairment 
and no evidence of other cognitive impairment. R.B. 
[47] and G.D. (N Rempel-Clower, S Zola-Morgan, 
LP,. Squire, Soc Neurosci Abstr 1994, 20:1075) devel- 
oped moderately severe anterograde amnesia following 
an ischemic event. In both cases, histopathological ex- 
amination after death revealed a bilateral lesion limited 
to the CA1 region of  the hippocampus. For Ik.B., ret- 
rograde amnesia was mild and limited to one or two 
years at most. For G.D., retrograde amnesia was diflq- 
cult to judge because of his low intelligence test scores 
and poor motivation, but it appeared, as in R.B., to have 
been quite limited ([13,48]; N Rempel-Clower, S Zola- 
Morgan, LR Squire, Soc Neurosci Abstr 1994, 20:1075). 
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Patient L.M. (N Rempel-Clower, S Zola-Morgan, Ltk 
Squire, Soc Neurosci Abstr 1994, 20:1075), also termed 
M.R.L. [49], and patient W.H. [50] had moderately se- 
vere anterograde amnesia (W.H.'s anterograde amnesia 
was more severe than that of  tk.B., L.M., or G.D.), and 
both had extensive, temporally-graded retrograde amne- 
sia covering at least 15 years (see also [13,48]). For both 
patients, post-mortem examination identified a bilateral 
lesion involving all the cell fields of  the hippocampus 
and the dentate gyrus (N Rempel-Clower, S Zola-Mor- 
gan, Ltk Squire, Soc Neurosci Abstr 1994, 20:1075; N 
Rempel-Clower, Ltk Squire, S Zola-Morgan, DG Ama- 
ral, unpubhshed observations). L.M. also had minimal 
cell loss in layers II and III of  the midportion of  the en- 
torhinal cortex, probably due to retrograde degeneration 
associated with damage to the dentate gyrus. W.H. had 
more substantial cell loss in the entorhinal cortex. An 
apparently similar amnesic patient with damage to all 
hippocampal cell fields and much of  the dentate gyrus 
was also described as having a severe, temporally-graded 
retrograde amnesia [51]. 

These cases suggest that damage limited to the CA1 field 
of the hippocampus (patients R.B. and G.D.) causes a 
very limited retrograde amnesia, whereas more exten- 
sive damage (patients L.M. and W.H.) causes extensive, 
temporally-graded retrograde amnesia. 

Prospective studies of retrograde amnesia in 
experimental animals 

Studies of remote memory in amnesic patients neces- 
sarily rely on retrospective methods and imperfect tests. 
As a result it is difficult to compare performance across 
time periods. Yet the pattern of  performance is critical 
to the interpretation of  the data [52]. Five prospective 
studies have found temporally-graded retrograde amne- 
sia in experimental animals using different species and 
tasks: object discrimination learning in monkeys [53], 
context-specific fear conditioning in rats [54], acquired 
food preference in rats [55], maze learning in mice [56], 
and trace conditioning of  the eyeblink reflex in rabbits 
[57°]. In each case, animals were trained at different time 
intervals before they received bilateral lesions of  the hip- 
pocampal region and/or adjacent, anatomically related 
cortex, and, in each case, the lesion produced the same 
pattern of  data. Specifically, remote memories were re- 
tained better than recent memories. The extent of  the 
retrograde amnesia varied from a few days [55] to about 
12 weeks [53]. 

Two other studies did not find evidence for a tempo- 
ral gradient of retrograde amnesia following lesions of 
the hippocampus in rats [58] or fornix transection in 
monkeys [59]. However, these studies assessed memory 
at only two different time points (recent and remote), 
which makes it more difficuk to detect a temporal gra- 
dient. Moreover, in one of  the studies, in which rats were 

tested on a water maze [58], performance of  the animals 
with hippocampal lesions was at chance at both time pe- 
riods for one measure, and performance was at chance 
at the remote period for a second measure. Accordingly, 
these floor effects might have precluded observing a 
gradient of  retrograde amnesia. In the other study, in 
which three monkeys were tested on visual discrim- 
ination learning [59], the recent and remote training 
regimens were not equivalent. The material to be re- 
membered from each time period (recent and remote) 
involved different numbers of stimulus items that had 
been trained with different schedules and for different 
numbers of  trials. In addition, a retention test for both 
sets of  items was given just before surgery, so that the 
items tested postoperatively did not belong exclusively 
to either remote or recent memory. 

Memory consolidation 

As documented in the preceding sections, temporally- 
graded retrograde amnesia can cover months or years. 
In addition, extensive temporally-graded retrograde am- 
nesia can result from damage limited to the hippocam- 
pal formation (patients L.M. and W.H.). Apparently, as 
time passes after learning, there is gradual reorganization 
within long-term memory storage whereby the impor- 
tance of  the hippocampal formation gradually diminishes 
and a more permanent memory system develops that is 
independent of  this region. This gradual process of  re- 
organization is usually termed memory consolidation. 
Memory consolidation was first proposed in 1900 to 
account for the phenomenon of  retroactive interfer- 
ence in human subjects, that is, the fact that material 
that is learned remains vulnerable to interference from 
presentation of  similar material for a period of  time 
after learning [60]. Almost immediately, support for 
consolidation was found in the facts of human retro- 
grade amnesia [61,62], and these ideas were eventually 
developed in some detail through studies of  temporally- 
graded retrograde amnesia in experimental animals and 
humans [52,63,64]. The key concept is that memory 
consolidation is the process by which memory becomes 
independent of the hippocampal region. 

Although this concept describes one important tradition 
of  work on memory consolidation, it is important to 
note that the term 'consohdation' has other contempo- 
rary usages that derive from the same historical sources. 
For example, the term has been used to refer generally 
to time-dependent processes during which memory be- 
comes fixed, regardless of what brain system is involved 
[65]. In addition, the term 'consohdation' is often used 
to describe the molecular cascades and morphological 
changes whereby synaptic modifications gradually be- 
come stable after learning [66,67]. There should be no 
confusion among these usages, if one keeps in mind the 
distinction between the level of analysis that describes 
the gradual stabilization of  synaptic modifications and 
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the level of  analysis that describes how different brain 
systems participate in memory as time passes after learn- 
ing [37]. 

The nature of memory consolidation: 
hippocampal-cortical interaction 

If one begins with the idea that the neocortex is the per- 
manent repository of memory [37,68,69], then memory 
formation must involve some kind of  interaction be- 
tween the neocortex and the hippocampal region or 
other components of the medial temporal lobe memory 
system [34]. Several proposals have been developed about 
how the medial temporal lobe might interact with neo- 
cortex to establish representations in memory [70-75], 
but most of these do not address directly the notion of  
consohdation and gradual change. 

Other proposals have considered consolidation specifi- 
cally and how the hippocampal region might be involved 
[36,76-79,80",81,82°°]. Researchers have employed var- 
ious anatomical terms to discuss consolidation (e.g. hip- 
pocampus, hippocampal system, medial temporal lobe). 
Below, we generally employ the terms used by each 
author. 

A key difference between these accounts is in the role 
played by medial temporal lobe structures. One early 
idea was that the hippocampus does not itself store in- 
formation, but sends an arousal signal to neocortex that 
enables the formation of new 'chunks' of  information 
[36]. Others have suggested that the hippocampus stores 
'indexes' [78] or 'pointers' that support the retrieval of  
specific patterns of cortical activation, or that the medial 
temporal lobe links together the different cortical sites 
that together represent a whole memory [77]. A third 
idea is that initial storage takes place within the medial 
temporal lobe or the hippocampus itself [76,80",82°°]. 
An important concept in several of these proposals is 
that information contained within the medial tempo- 
ral lobe directs consolidation by gradually changing the 
organization of cortical representations, for example, by 
strengthening connections between the cortical sites that 
participate in representing a memory. 

More recent approaches have made a basic distinction 
between the operating principles of the hippocampal 
system and neocortex [79,82°',83°']. The hippocam- 
pal system is able to serve as a temporary memory 
store because hippocampal synapses can change quickly. 
Neocortical synapses change slowly. Consolidation oc- 
curs when the hippocampal system repeatedly reactivates 
representations in neocortex, leading eventually to strong 
interconnections among cortical sites, which can support 
memory independently of  the hippocampal system. 

Computational considerations led McClelland, 
McNaughton and O'P,.eilly [82 °°] to suggest that 

consolidation is important precisely because it enables 
the neocortex to change in a gradual way, slowly in- 
corporating into its representations the regularities of the 
environment, such as facts about the world. Rapid modi- 
fication of cortical representations would lead to instabil- 
ity. Temporary storage of  information, during the con- 
solidation period, is accomplished by rapidly established 
and short-lived modifications within the hippocampal 
system. Facts and events that are to be stored perma- 
nently are then gradually incorporated through the con- 
solidation process into an already existing framework in 
neocortex. 

It has been pointed out repeatedly that the phenomenon 
of  long-term potentiation (LTP) is well-suited for the 
kind of associative, rapid learning for which the hip- 
pocampal system is specialized [71,76-79,80°,84]. Fur- 
ther consideration of the neuroanatomy and neurophy- 
siology of the hippocampus led to the proposal that the 
hippocampus stores memory rapidly within the CA3 
field (which operates as an auto-associative network) 
[80°,84]; later, when a partial cue is presented, the hip- 
pocampus can reconstruct memory in neocortex by re- 
activating neocortical sites [80°]. Across time, and as a 
result of  repeated reactivation, memories are fully estab- 
lished in neocortex. 

A simple neural network model of  consolidation has re- 
cently been constructed that captures many of  the. ideas 
just reviewed, and produces behavior like that observed 
in studies of retrograde amnesia [83 °°] (Fig. 1). Informa- 
tion is initially established rapidly as short-lived modifi- 
cations in the reciprocal connections between neocortex 
and the medial temporal lobe. The role of  the medial 
temporal lobe is to store sufficient information to point 
to and activate the relevant sites in neocortex, rather than 
to store the entire memory representation itself. These 
changes allow the medial temporal lobe to bind together 
the multiple neocortical sites that store the representation 
of a whole event. Consolidation occurs when the neo- 
cortical representations are repeatedly co-activated by the 
medial temporal lobe. When this occurs, gradual and 
long-lasting changes occur in the connections between 
the cortical areas. Eventually, these cortico-cortical con- 
nections become strong enough that the medial temporal 
lobe is not needed to recreate the original representation. 

The model suffers from several limitations because of 
its small size and simple structure, but it behaves in a 
way that is consistent with experimental data and pro- 
vides a useful hypothesis to guide further investigation. 
The remaining sections consider two features of mem- 
ory consohdation that are crucial to several of the recent 
proposals and that neurobiological studies are beginning 
to address: first, the idea that consolidation is driven by 
reactivating representations within the medial temporal 
lobe; and second, the idea that consolidation is embodied 
in long-term, gradual changes in connections within and 
between neocortical areas. 
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Fig. 1. A neural network model of memory consolidation. 
(a) Schematic diagram of the neural network model. Areas cortex 1 
and cortex 2 represent association neocortex, and area MTL repre- 
sents the medial temporal lobe memory system. Each unit in each 
of the areas is reciprocally connected to all units in all other ar- 
eas. Connection strengths change with experience according to a 
Hebb-like competitive learning rule. A key feature of the model is 
that changes in the connections to and from the MTL area are fast 
and short-lasting, whereas changes in the connections between the 
neocortical areas are slow and long-lasting. Consolidation occurs 
when random activity in the MTL co-activates the stored pat- 
terns in cortex 1 and cortex 2, which results in strengthening of 
the cortico-cortical connections. (b) Performance of this model in 
a 'retrograde amnesia' experiment. The network learned two dif- 
ferent patterns concurrently, and was tested on how well it was 
able to reproduce these patterns after varying amounts of time, 
given presentation of a part of each pattern. The X-axis shows a 
measure, in arbitrary units, of the time allowed for consolidation 
and forgetting. The Y-axis shows a measure of the network's perfor- 
mance, in arbitrary units, where high values indicate good recall of 
the learned information. The 'normal' curve (thick line) shows the 
performance of the intact network. The 'lesioned' curve shows the 
performance of the network when the MTL area was inactivated 
immediately prior to testing. The performance of this model is 
similar to the results of animal experiments: damage to the MTL 
produces temporally-graded retrograde amnesia, and remote mem- 
ories are remembered better than recent memories. Reprinted with 
permission from [83°°]. 

When and how are representations in the 
medial temporal lobe reactivated? 

If consolidation is occurring constantly, that is, if stored 
memories are continually being revived as a part of  nor- 
mal brain activity, an explanation is needed for why 
this process does not regularly intrude into conscious- 
ness. Alternatively, consolidation might occur in a par- 
ticular brain state, such as rapid eye movement (REM) 
sleep or slow-wave sleep. Recent findings identify some 

interesting properties of  slow-wave sleep that would ap- 
pear to make it useful for consolidation. First, the effec- 
tiveness of  neural transmission within the hippocampal 
circuitry is greater during slow-wave sleep than dur- 
ing R E M  sleep or waking states [85,86]. Yet, plasticity 
within the same circuitry is reduced during slow-wave 
sleep [87]. Thus, if reactivation of stored representa- 
tions in the hippocampus occurred during slow-wave 
sleep, excitation might be transmitted readily through 
the hippocampus without modifying the stored rep- 
resentations. Also, during slow-wave sleep, CA3 and 
CA1 cells discharge in synchronous, high-frequency, 
population bursts that lead to increased activity in 
deep-layer neurons of  hippocampal target structures 
(the subicular complex and entorhinal cortex) [88,89°°]. 
Chrobak and Buzsaki [89 .°] suggested that such a mech- 
anism provides a way to drive synaptic changes within 
hippocampal-entorhinal circuitry and a way, ultimately, 
to influence representations in neocortex. 

In another study [90], CA1 pyramidal neurons in rat hip- 
pocampus fired during the waking state when the animal 
entered appropriate spatial locations (place fields) in a test 
apparatus. During subsequent REM sleep or slow-wave 
sleep, the same neurons were more active than neurons 
not activated during the waking state. In a more recent 
study by Wilson and McNaughton [91"°], simultaneous 
recordings were made from 50 to 100 CA1 neurons of  
rat hippocampus. Neurons that tended to fire together 
during exploratory behavior, because they were co-acti- 
vated when the animal entered overlapping place fields, 
had an increased probability of firing together during a 
subsequent episode of slow-wave sleep. (Data from R E M  
sleep episodes were not reported.) Thus, a distributed 
ensemble of  neurons in the hippocampus that is active 
during behavior persists after the behavior has ceased 
and then exhibits increased coherence during slow-wave 
sleep. These studies provide suggestive evidence for the 
reactivation of  memory representations during sleep as 
part of  an endogenous, gradual process by which mem- 
ory is consolidated in neocortex. 

Evidence for changes in neocortical connections 

The facts of  temporally-graded retrograde amnesia, and 
virtually all accounts of  this phenomenon that involve 
the concept of  memory consolidation, suggest that 
memory storage and retrieval come eventually to be 
supported by neocortex as the result of  gradual changes 
in connectivity within neocortex. Recent studies show 
how changes in cortical connectivity can occur as the re- 
sult of  behavioral experience and give some hints about 
how memory consolidation in neocortex might occur. 
One well-known finding is that exposure of  rats to an 
enriched environment leads to an increase in dendritic 
length and to an approximately 22% increase in the num- 
ber of  synapses per neuron in layers I-IV of occipital 
cortex (for review, see [92]). The changes in dendritic 
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length have been detected after only four days [93]. In a 
preliminary study, changes in total dendritic length were 
reduced by damaging the hippocampal formation prior 
to the environmental manipulation (R,J Sutherland, BE 
Kolb, I~ Gibb, Soc Neurosci Abstr 1993, 19:362). 

Further evidence that behavioral experience can induce 
substantial morphological growth and change in neocor- 
rex has come from a demonstration in rats that learning 
to traverse a difficult, elevated path increased by 25% the 
number of  synapses per Purkinje cell in the paramedian 
lobule of  the cerebellum [94], and that training rats to 
reach for food with one forelimb increased total den- 
dritic length in layer V pyramidal cells [95]. 

In adult monkeys, changes in the size and organization 
of somatosensory or auditory cortical maps can be in- 
duced by behavioral training (for review, see [96°]; for 
possibly related observations after sensory deprivation in 
adult humans, see [97°]). For example, when owl mon- 
keys learned to discriminate vibration frequencies with a 
single digit of one hand, the somatosensory cortical maps 
of the trained digit (and, to a lesser extent, adjacent dig- 
its) reorganized and expanded, and the timing of  neural 
responses within the maps became sharper and more co- 
herent. The temporal changes occurred in parallel with 
and correlated highly with progressive improvement in 
discrimination ability [98,99]. 

Direct evidence for structural changes in neocortex in 
response to a specific manipulation of  visual experience 
was observed in adult cats with small, binocular retinal 
lesions [100°°]. Immediately after the lesions, unit activ- 
ity could not be driven by visual stimuli along a 7.5 mm 
length of  visual cortex (area V1); that is, there was a 
scotoma covering about 15 degrees of  the visual field. 
After about nine months, about 5mm of the cortical 
scotoma had recovered visually driven activity. Quantita- 
tive, anatomical studies showed that horizontally project- 
ing intracortical neurons, within the reorganized portion 
of  cortex, had increased their fiber density by 57-88%. 
The structural changes appeared to be gradual, imply- 
ing a slow-developing and eventually substantial increase 
in the number of  synaptic connections. Presumably, the 
neuronal targets of  this axonal sprouting were innervated 
originally by input from the area of the scotoma. New 
connections permit these neurons to become newly re- 
sponsive to retinal loci just outside the scotoma, thereby 
reducing its effective size. It seems likely that the ob- 
served changes depend on continuous visual experience, 
but this point has not been addressed experimentally. 

The examples of modified cortical connectivity just 
described lead to the following generalizations: the 
changes can occur gradually across weeks and months; 
the changes are limited to expansion of the original ax- 
onal and dendritic fields or arborizations within these 
fields; and the changes probably depend on continuing 
input into the reorganized area. 

Although these examples are somewhat remote from the 
concept of  memory consolidation under discussion (e.g. 

they do not for the most part involve behavioral changes 
that depends on the medial temporal lobe), each of  the 
above-mentioned generalizations is compatible with, if 
not required by, current views of  the kind of interaction 
between the medial temporal lobe and neocortex that 
underlies memory consolidation. Specifically, changes 
in neocortex are proposed to develop gradually over a 
long time period, to involve modifying the strengths of 
connections between cortical areas, and to be driven by 
continuing input from the medial temporal lobe, perhaps 
during slow-wave sleep. 

A recent preliminary report (Y Miyashita et al., Soc 
Neurosci Abstr 1994, 20:428) suggests the possibility of 
studying memory consolidation even more directly by 
recording in the awake, behaving monkey from cortical 
neurons that are part of  memory representations depen- 
dent on the hippocampal system. Ibotenate lesions of en- 
torhinal and perirhinal cortices abolished experience-de- 
pendent single-unit responses to preoperatively learned 
stimuli and prevented the development of  responses to 
new stimuli [101]. The implication is that the sam- 
pled neurons are part of  memory representations and that 
the normal input to neocortex from the medial temporal 
lobe is required to maintain recently acquired representa- 
tions in memory as well as to establish new ones. When 
it becomes feasible to observe directly within single cells 
the development of  cortical plasticity dependent on the 
hippocampal system, one can expect the entire discus- 
sion of memory and memory consolidation to rise to a 
new level. 

Conclusions 

In studies of  both humans and experimental animals with 
damage to medial temporal structures, retrograde amne- 
sia is often temporally graded within very long-term 
memory, supporting the idea of  a memory consolida- 
tion process that occurs gradually across an extended 
time period. The sparing of  remote memory (but not 
recent memory) after medial temporal lobe damage 
shows that, as time passes after learning, the importance 
of medial temporal lobe structures for memory gradually 
diminishes. Recent theoretical accounts of  memory con- 
solidation propose that medial temporal lobe structures 
direct consolidation in neocortex by gradually binding 
together the multiple, geographically separate cortical 
regions that together store memory for a whole event. 
Recent physiological data demonstrate the activation of  
hippocampal-entorhinal circuitry and the apparent re- 
playing of  recent experiences during slow-wave sleep, 
suggesting a mechanism for driving consolidation in 
neocortex. Recent anatomical data demonstrate gradual, 
experience-dependent reorganization of  cortico-cortical 
connectivity. It should soon be possible to study con- 
solidation directly at different times after learning by 
sampling neurons in neocortex that are part of  memory 
representations dependent on the medial temporal lobe. 
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